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Abstract

Systemic Cytokine Response, Hematological Status, and Bio-
logical Response Modifiers
Cytokine production by different kinds of macrophages, and serum IL-1β, 
TNF-α, IL-6, IL-3, and GM-CSF levels, were evaluated in a murine model 
of combined injury (whole body irradiation + thermal burn). The results were 
compared with systemic cytokine responses to radiation or burn alone. The 
obtained data suggest that increased IL-6 levels may play an important role in 
the pathogenesis of combined injury. Single injection of extract from Serra-
tia marcescens (Imuvert) or synthetic trehalose dicorynomycolate improved 
hematological status, enhanced the serum IL-6 levels, but did not promote 
survival in mice. On the other hand, heat-killed Lactobacillus acidophilus 
demonstrated a weak effect on cytokine response, did not improve severe 
hematological disorders, but none the less increased 30 days survival in mice 
up to 100%, versus 50% in the untreated group.
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1.0  Introduction

At Hiroshima and Nagasaki, over two thirds of injured survivors had more than 
one type of injury (radiation, mechanical trauma, thermal burns.) At Chernobyl, 
of the 31 people who died from acute radiation syndrome, two thirds of these 
had significant thermal burns; at the higher levels of radiation exposure, almost 
100% of patients had burns. Troops exposed to a nuclear weapon or explosive 
radiological dispersal device (RDD), or who may be required to control a major 
reactor accident or incident, will therefore be more likely to have combined 
injury (CI) rather than only radiation exposure.
The clinical course and outcome of CI are more severe than in acute radiation 
syndrome alone. Even thermal burns or wound trauma that would be benign 
by themselves are capable of decreasing the survival rate of patients ex-
posed at minimally lethal or midlethal radiation dosages. Myelosuppression 
and prolonged neutropenia, induced by accidental exposure, will contribute 
to morbidity and complications associated with increased susceptibility to 
endogenous infection. Exposed patients with additional traumatic injury 
die during the first two or three weeks after irradiation mainly due to sepsis 
[12, 13, 84, 85]. Until recently, however, the mechanisms responsible for 
increased morbidity and mortality among those with CI were not clear. The 
differences between the pathogenesis of combined vs. radiation alone injury 
must be more clearly understood than at present.
Currently it is well known that cytokine-mediated proliferation and differentia-
tion of quiescent hematopoietic stem cells are prerequisite for survival after 
life-threatening whole body irradiation. The cytokines serve as natural de-
fenses against radiation. The endogenous production of cytokines contributes 
to the animalʼs ability to survive midlethal doses of radiation. Studies using 
antibodies to IL-1 receptor, TNF, IL-6, and anti-c-kit ligand antibody have 
demonstrated that endogenous production of these cytokines is required for 
mice to survive lethal irradiation [32, 53, 58, 60, 95]. The interdependence and 
synergistic interactions of these three key cytokines are apparently necessary 
to demonstrate many of their biological effects. IL-1, IL-6, and TNF stimulate 
production of a cascade of hematopoietic growth factors, including IL-3, G-
CSF, GM-CSF, that are more restricted to hematopoietic effects [59, 61].
Unfortunately, until recently, there have been no published experimental data 
evaluating production of the multifunctional cytokines IL-1β, IL-6, and TNF-α 
by tissue macrophages after irradiation alone and combined injury. Published 
experimental data that simultaneously evaluate serum levels of these and more 
lineage-specific hemoregulatory cytokines after irradiation alone and combined 
injury are also missing.
At the same time, the analysis of recent publications showed that thermal 
injuries per se may induce essential changes of different cytokines. The sys-
temic cytokine response to burns is mainly represented by IL-1β, TNF-α and 
IL-6. These cytokines are the most important endogenous mediators which are 
responsible for the post-burn mortality associated with bacterial endotoxemia 
and sepsis. Bone marrow, alveolar, splenic or peritoneal macrophages, primed 
in vitro by LPS, produced different amounts of TNF, IL-6 and IL-1 compared 
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with sham burned animals [25, 67, 70]. Increasing evidence shows that cells 
other than immune cells (hepatocytes, enterocytes) have the potential for en-
hanced production of TNF and IL-6 after thermal injury [65, 68, 69]. Microvas-
cular endothelium may be a contributing source of IL-6 after thermal injury [4]. 
Unburned skin may be a major source of IL-6 production after thermal injury 
and may contribute to the physiologic alterations occurring after such injury 
[34]. Thermal burns cause significant changes of the serum cytokine levels that 
play key roles in acute inflammation, excess protein turnover and catabolism, 
multiple organ failure, and immunosuppression [3, 17, 23, 40, 41, 71, 80].
In other words, if combined injury occurs, burn-induced cytokine response may 
enter into interaction with the radiation-induced response of the cytokine net-
work. It is hard to predict the results of such an interaction. One can expect that 
there will be significant differences in the types, amounts and rates of cytokine 
elaboration between acute radiation injury and combined injury. Therefore, one 
of the main objectives of this study is comparative experimental evaluation of 
the system cytokine response (macrophage production and serum levels) to 
irradiation alone, or to combined injury. When compared with corresponding 
hematological data (early blood system responses to radiation alone, or to com-
bined injury), the demonstrated results would give new useful information for 
understanding the aggravating effects of burns on the acute radiation syndrome. 
This is the first study that examined the production of TNF-α, IL-1β, and IL-6 
by three different populations of macrophages as well as evaluated serum TNF-
α, IL-1β, IL-3, GM-CSF, and IL-6 levels from the mice subjected to irradiation 
or combined injury. The results of the experimental study would be especially 
important as a scientific basis for the future improvement of combined injury 
treatment in mass casualty situations. 
Several in vivo studies suggest the importance of hematopoietic regulatory 
cytokines and growth factors, such as G-CSF, GM-CSF, IL-1, IL-3, IL-11, and 
TPO, for the treatment of accidental radiation-induced bone marrow aplasia. 
Hemopoietic growth factors and cytokines, administered therapeutically after 
total body irradiation, significantly improved hematopoietic recovery and 
increased survival of lethally irradiated animals [19, 39, 55, 63, 81, 83, 88, 89]. 
Therapeutic protocols that included injection of two or three types of cytokines 
(GM-CSF + IL-3, IL-3 + IL-6, G-CSF + IL-6, stem cell factor + IL-1 + IL-3, 
megakaryocyte growth and development factor + G-CSF, TPO + G-CSF, IL-11 
+ IL-3 etc.) demonstrated more significant acceleration of hematological status 
recovery in comparison with single cytokine therapy [20, 21, 24, 44, 56, 75, 
91]. Therapeutic approaches focused on the evaluation of lineage-specific cyto-
kines and the using of combinations of cytokines protocols to enhance hemato-
poietic recovery from irradiation have developed mainly in the USA and in the 
framework of international scientific collaboration [1, 14, 15]. Unfortunately, 
this new effective approach probably will not be used in mass casualty situa-
tions because of limited resources. 
An alternative to the schemes of prolonged administration of multiple cytokines 
is a single injection of so-called biologic response modifiers (BRMs) that induce 
the endogenous expression of hematoregulatory cytokines or growth factors, 
stimulate multipotential hematopoietic progenitors, accelerate the recovery of 
hematopoietic parameters and increase survival [11, 30, 46 - 48, 52, 78].
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Bacterially derived BRMs, such as a dephosphorylated derivative of the lipid 
A moiety of LPS, extract from Serratia marcescens (Sm-BRM), and synthetic 
trehalose dicorynomycolate (S-TDCM), differentially enhanced elevated 
splenic gene expression of hematoregulatory cytokines after sublethal gamma 
irradiation. S-TDCM, and Sm-BRM, that sustained or even enhanced irradia-
tion-induced expression of specific cytokine genes, increased plasma CSF 
activity and improved survival after experimental infection [78]. A single 
injection of a heat-killed Lactobacillus casei preparation, given after irradia-
tion, significantly enhanced granulopoiesis, increased the amount of endog-
enous spleen colonies as well as increased serum M-CSF activity, augmented 
expression of M-CSF mRNA in the liver, and increased the survival rate of 
lethally irradiated mice [26, 62, 86].
At the same time, S-TDCM did not increase survival of irradiated mice that 
also received a skin wound. Lethal gamma or mixed gamma-neutron irradi-
ated mice inflicted with wound trauma succumbed to sepsis before augmented 
hematopoietic regeneration could occur. Significant increase of the survival 
rate was achieved only when systemic treatment with S-TDCM or gentamicin 
was combined with topical treatments of gentamicin cream [38, 45]. Our own 
experience confirms the preliminary hypothesis that not all BRMs that are 
recommended for treatment of acute radiation syndrome alone may be optimal 
therapy for patients suffering from combined injury. At least, only individual 
preparations from the large number of evaluated BRMs were able to signifi-
cantly increase 30 day survival. It should be emphasized that these BRMs 
promoted survival without improvement of hematological status [5 - 7, 35, 
74]. Moreover, at present nothing is known about the effects of in vivo BRMs 
administration on the systemic cytokine response during combined injury.
So, several BRMs that enhanced radiation-induced expression of specific 
cytokine genes improved hematopoietic cell recovery and prevented death after 
irradiation. Whether these new therapeutic remedies will be able to enhance 
an “appropriate” cytokine response, improve blood system status, and increase 
survival of mice that have been subjected to combined injury, remains to be 
determined. This study will analyze the responses of combined injured versus 
irradiated only mice to therapeutic administration of three BRMs (S-TDCM, 
Serratia marcescens extract, and heat-killed Lactobacillus acidophilus).
In general, the authors of this final report investigated, in a murine model of 
combined injury, whether: 1) macrophages from these animals produce differ-
ent amounts of TNF-α, IL-1β and IL-6 compared with irradiated only mice; 2) 
thermal burns given to irradiated mice alter the radiation-induced blood serum 
level of these and other hemoregulatory cytokines; 3) the single therapeutic ad-
ministration of BRMs in the early stages of combined injury corrects the blood 
serum level of cytokines; and 4) the single administration of BRMs improves 
hemopoietic recovery and increases 30 day survival from combined injury.
It was established that the levels of cytokine production by peritoneal, splenic, 
and bone marrow macrophages after combined injury did not differ versus 
acute radiation syndrome, as a rule. Burn-induced effects modified radiation-in-
duced alteration of serum cytokine levels, and revealed a more evident increase 
of serum IL-6 levels after combined injury. A single injection of both S-TDCM 
and Sm-BRM improved the hematological status of combined injury mice and 
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enhanced serum IL-6 levels, but did not promote survival of the mice. Heat-
killed Lactobacillus acidophilus revealed a relatively weak modifying effect 
on the serum IL-6 levels, and did not improve severe hematological disorders 
after combined injury. However, a single injection of heat-killed Lactobacillus 
acidophilus increased the 30 days survival up to 50% versus untreated mice. 
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2.0  Materials and Methods

2.1  Experimental Design and General Procedures
Male mice CBAxC57BL6 weighing 22-24 g were used for the experiments 
throughout this study. Animals were quarantined and acclimated to laboratory 
conditions for at least two weeks prior to experimentation. Mice were irradiat-
ed in the Medical Radiological Research Centerʼs 60Co gamma radiation source 
(Obninsk, Russia). Irradiation was performed to a total absorbed dose of 7 Gy 
at a dose rate of 0.45 Gy/min. Mice receiving burns only or combined injury 
received a full thickness thermal burn to 10% of the total body surface area 
(TBSA) by means of a powerful light exposure. The thermal burn was given 
immediately following irradiation in the combined injury subjects. 
Animals were anesthetized (intraperitoneal injection of Nembutal, 2 mg/100 
gm) prior to shaving the dorsum and inflicting the burn. All four mouse paws 
were fixed with tape to a plastic board, and the dorsal skin area shaved to the 
indicated area using a published formula for computing TBSA from body 
weight. Shaved mice, fixed to a plastic board, were placed into a box template 
that exposed 10% of their TBSA. The area of the box outside the open window 
had heat-shielding material. Six halogen lamps were positioned parallel to the 
exposed skin surface, 10 mm away. Light exposure time was 1.5 seconds. To 
reduce dehydration, immediately after induction of thermal trauma all animals 
received intraperitoneal resuscitation with 1.0 ml normal saline. Fluid resusci-
tation of burned mice, consisting of one ml saline daily, was performed until 
sacrifice. The thermal injuries induced caused a “dry” (coagulated) form of skin 
necrosis; healing took place under dry eschar, and suppurative complications 
or ulcerations were rare. Sham burned animals were anesthetized, shaved, and 
placed into a box template without exposure to light. These normal healthy 
mice were used as a control group.
Cytokine production (IL-1β, IL-6 and TNF-α) by peritoneal, splenic and bone 
marrow macrophages were studied at 3, 6, 24, 48 and 72 hours after irradiation, 
thermal burn or combined injury. Normal healthy animals served as a control 
group. Ten mice from each group were sacrificed at every indicated observation 
point, for a total of 200 mice. The serum levels of IL-1β, IL-3, IL-6, GM-CSF 
and TNF-α were measured at the same time intervals and in the same four exper-
imental groups. Twenty mice were used at each point of observation, for a total of 
400 mice. Cytokine production from cultured macrophages, and serum cytokines 
levels were determined by enzyme-linked immunosorbent assay (ELISA).
Peripheral blood cell values (leukocytes, platelets, and erythrocytes), bone 
marrow cellularity, and the number of endogenous spleen colony-forming units 
(CFUs) were evaluated as well as measurements of cytokine production.

2.2  Macrophages and Culture Conditions
Resident peritoneal macrophages were harvested by peritoneal lavage. After 
washing, macrophages were suspended in cold (+4° C) Eagleʼs medium supple-
mented with heparin (10 U/ml), gentamicin (80 μg/ml), L-glutamine (0.2 mM), 
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and 10% bovine serum. Spleens were harvested and homogenized in 5 ml 
cold complete Eagleʼs medium by means of manual glass tissue homogenizer. 
Bone marrow cells were obtained by flushing both femora with 1 ml of Eagleʼs 
medium per femur to obtain sufficient cells for in vitro cytokine production as-
says. Macrophages were harvested in aseptic conditions. Sterile technique was 
used throughout all cell culture experiments.
After centrifugation and repeated washing of each cell suspension with cold 
Eagleʼs medium, complete Eagleʼs medium was added to the cell sediments. 
Suspended cells were seeded into plastic Petri dishes (150 x 15 mm) and were 
allowed to adhere for 2.5 hr at 37° C in 5% CO2 – 95% air atmosphere. To 
remove nonadherent cells, the dishes were washed three times by pre-warmed 
Eagleʼs medium. The concentration of peritoneal and bone marrow macro-
phages from each animal was adjusted to 0.5 x 106 /ml, and splenic macro-
phages to 2 x 106 /ml, in RPMI 1640 medium supplemented with gentamicin 
(80 μg/ml), L-glutamine (0.2 mM) and 10% heat-inactivated bovine serum. For 
determination of the production of IL-1, IL-6, and TNF, 2 ml of macrophages 
suspension were added to each well of a 6-well culture plates. After adherence, 
macrophages were incubated at 37° C for 24 hr in the presence of 5% CO2 in 
an automatic digital CO2 incubator (Flow Laboratories, England). Three of 
the six wells contained cells and medium alone (evaluation of spontaneous 
cytokine production), and the next 3 wells contained cells, medium and LPS 
from Escherichia coli 055:B5 (1 μg/ml, evaluation of in vitro LPS-stimulated 
cytokine production). Splenic macrophages were cultured in the presence of 
2 μg/ml LPS from E.coli. The numbers of macrophages used for incubation, 
doses of LPS for in vitro macrophage stimulation, and duration of cell culture 
were selected based on review of the literature [16, 18, 22, 25, 66, 79]. Mac-
rophages from each mouse were cultured separately. At the end of incubation, 
cell-free culture supernatants were collected and stored at -40° C until assayed 
for cytokine concentration. Each supernatant sample was evaluated for IL-1β, 
IL-6 and TNF-α levels detection.

2.3  Cytokine Assays
Concentrations of IL-1β, IL-6 and TNF-α in cell-free culture supernatants were 
measured using commercial matched antibody pair and standards for quantita-
tion of mouse cytokines (ELISA MiniKits, “Endogen”, USA). 96-well immu-
noplates were used. Each test sample and the diluted standards were added to 
immunoplates in duplicate. The assays of IL-1β, IL-6, and TNF-α were per-
formed according to the manufacturerʼs instructions. Optimal working concen-
tration of biotin-labeled detecting antibody, and coating antibody, as well as 
HRP-conjugated streptavidin dilution, were determined beforehand by using 
“checkerboard matrix” titration experiments in accordance with Endogen s̓ 
“Guide to custom ELISA development with matched antibody pairs and sup-
porting reagents”. Phenylenediamine substrate was used for the detection sys-
tem. The wavelength 492 nm was set at the ELISA reader (Uniplan-M “Picon” 
Inc.). This reader was supplied by a special programmed device for automatic 
construction and calibration of a standard curve construction, calculation of 
cytokine concentration, and printing out the final results on paper.
Commercially available matched antibody pairs for quantization of mouse IL-
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1β, IL-3, IL-6, TNF-α and GM-CSF (“Biosource”, “R&D”, “Endogen”, USA) 
were used to measure the serum concentration of cytokines. Blood samples were 
obtained and allowed to clot at room temperature for two hours. The serum was 
then separated by centrifugation. Serum samples were frozen and stored prior to 
assay. Assays were performed after twofold dilution of pooled sera (two mice/
pool) using buffer solutions recommended by manufacturer s̓ instructions. 
The ELISA tests had sensitivities of 50 pg/ml for IL-1β, 50 pg/ml for IL-3, 25 
pg/ml for IL-6, 7.8 pg/ml for GM-CSF, and 50 pg/ml for TNF-α. 

2.4  Reagents, Cell Culture and ELISA Supplies
RPMI 1640 medium, lipopolysaccharide from Escherichia coli 055:B5, Strep-
tavidin-Peroxidase, Thimerosal, and bovine serum albumin were obtained from 
Sigma Chem. Co. (St. Louis, USA). TRIS buffer was obtained from Serva 
(Germany), and Tween-20 from Ferak (Germany). Nembutal, gentamicin, L-
glutamine, bovine serum, Eagleʼs medium, and phosphate buffered saline were 
purchased from PanEco (Moscow, Russia), and phenylendiamine substrate 
from Dia-M (Moscow, Russia).
There were 6-well culture plates (Costar Corp., MA, USA), 96-well immuno-
plates (“96F Nunc Immunoplate I”, Denmark), polystyrene conical tubes with 
screw caps (Becton Dickinson, USA), micro test tubes and Eppendorf Eurotips 
(Eppendorf, Germany) were used.

2.5  Hematology
Bone marrow cellularity, endogenous CFUs and blood cells counts (leukocytes, 
platelets, and erythrocytes) were evaluated at the aforementioned observaiton 
points for cytokine production study. A number of nucleated cells in the bone 
marrow suspensions was determined after centrifugation and repeated washing of 
cell suspension with cold Eagle s̓ medium. All measurements of peripheral blood 
were made using an automatic hematology analyzer MINOS STX (France).

2.6  Biological Response Modifiers
Three BRMs (synthetic trehalose dicorinomycolate, extract from Serratia 
marcescens, and heat-killed L. acidophilus) were studied for their effects on the 
serum levels of cytokines after burn only, radiation only, or combined injury. 
A group of healthy normal mice, injected with BRM, served as control. Eight 
mice were required at each point of observation: 3, 6, 24, 48 and 72 hours, for a 
total of 160 for each BRM. The total for all three BRMs plus a control group of 
non-treated animals was 640 mice. A single injection of synthetic trehalose di-
corinomycolate (STDM, 200 μg, intraperitoneally), or Imuvert (commercially 
available preparation of extract from Serratia marcescens, 100 μg, intraperi-
toneally) was performed one hour after irradiation, burns, or CI. Heat-killed 
Lactobacillus acidophilus (LA) was injected immediately after irradiation, 
burns, or CI (0.1 ml, 108 cells/ml, subcutaneously). In addition, a fourth group 
of mice was injected with saline only as the control BRM. Doses for the STDM 
and Imuvert were selected based on the review of literature published from 
AFRRI [38, 45; 78]. The concentration selected for the third BRM is based on 
our previous experience with this agent [8, 87].
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In addition, 240 mice were used to evaluate BRM therapeutic effects on the 
survival rate, number of endogenous CFUs, bone marrow and blood cell re-
covery after combined injury (80 mice for each of the 3 BRMs). 80 mice with 
combined injury were studied as the control (untreated) group.
Aliquots of STDM emulsion for injections were prepared in accordance 
with manufacturerʼs instruction (Ribi ImmunoChem. Res., Inc). Lyophilized 
samples of Imuvert were resuspended with water for injection immediately 
prior to use. Lyophilized samples of heat-killed L. acidophilus were dissolved 
in saline ex tempore too.

2.7  Statistics
Cytokine concentrations in cell-free supernatants from cultured macrophages 
or in blood serum, peripheral blood cell values (leukocytes, platelets, eryth-
rocytes), bone marrow cellularity, and the number of endogenous spleen 
colony-forming units (CFUs) were calculated as the mean ± SEM. Differenc-
es between compared groups were analyzed using Studentʼs t-test, one-way 
ANOVA (the software package MicroCal Origin, version 3.0), and Mann-
Whitney U-test. Survival data for mice in experimental groups during 30-day 
periods after combined radiation injury (treated with BRMs and untreated) 
were compared by using Fisherʼs test. A p value of <0.05 was used as the 
level of statistical significance.
All animal experiments were approved by the Armed Forces Radiobiology 
Research Instituteʼs Animal Care and Use Committee.
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3.0  Results

3.1  In Vitro Production of Cytokines by Different Populations of 
Macrophages Following Radiation, Thermal or Combined Injury
The results of IL-6 ELISA assays of the culture supernatants of peritoneal mac-
rophages, incubated with or without addition of LPS to the culture medium, are 
shown in Table1 and are expressed as percentage of control values. (When abso-
lute values were determined, LPS-stimulated peritoneal macrophages produced 
larger amounts of IL-6 than that produced by unstimulated cells). Radiation and 
combined injury revealed a moderate increase of IL-6 production within the 
first six hours, and caused a more prominent second phase of cytokine eleva-
tion at two and three days after exposure. There were no significant differences 
between radiation and combined injury groups in the release of IL-6 by perito-
neal macrophages at any time point after exposure (both with and without LPS 
stimulation). In spite of the comparatively much higher IL-6 elevation in 24 h 
after burn alone, peritoneal macrophages of mice that were burned and irradi-
ated did not release detectable amounts of IL-6 at the indicated time.

Table 1. Effects of Radiation, Combined Injury, and Burn on Murine Peritoneal Mac-
rophage IL-6 Production (pg/ml).

Group 3 hr 6 hr 24 hr 48 hr 72 hr
Spontaneous Cytokine Production 

Radiation 183 ± 16* 143 ± 16* ND 557 ± 92* 292 ± 6*
Combined 
injury

201 ± 22* 166 ± 28* ND 416 ± 38* 301 ± 6*

Burn 90 ± 11 133 ± 18 1326 ± 385* 554 ± 114* 181 ± 7*
Control 100 ± 10 100 ± 12 100 ± 21 100 ± 28 100 ± 20

LPS-stimulated Cytokine Production
Radiation 162 ± 13* 125 ± 14 ND 583 ± 71* 237 ± 15* 
Combined 
injury

155 ± 13* 136 ± 12* ND 549 ± 47* 256 ± 12*

Burn 105 ± 13 100 ± 11 782 ± 163* 575 ± 53* 177 ± 12*
Control 100 ± 12 100 ± 12 100 ± 19 100 ± 17 100 ± 16
* p < 0.05 with respect to control values. ND - not detectable levels.

No detectable levels of TNF-α were revealed in the cell-free culture super-
natants of peritoneal macrophages following radiation, thermal or combined 
injury, as well as in the control group.
In vitro production of IL-1β was detected and elevated only at 72 h after radia-
tion (231 ± 77 pg/ml), combined injury (197 ± 92 pg/ml), and burn (173 ± 29 pg/
ml) in the LPS-stimulated peritoneal macrophages cultures studied. Differences 
between radiation and combined injury groups were not statistically significant.
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Neither radiation alone nor combined injury enhanced in vitro production of 
IL-1β, TNF-α and IL-6 by splenic macrophages. Also in the control group 
(normal healthy mice), the levels of all three cytokines in culture supernatants 
were lower than the sensitivity limits of the ELISA. However, splenic macro-
phages produced increased amounts of IL-6 at 24 h after thermal burn (500 ± 
247 pg/ml, non-stimulated cells response; 568 ± 227 pg/ml, LPS-stimulated re-
sponse). This transitory activation of the splenic macrophages, harvested from 
burned mice, was simultaneously accompanied with LPS-stimulated elevation 
of IL-1β. Concentration of IL-1β in the culture supernatants increased from an 
undetectable level (control value) up to 142 ± 34.6 pg/ml.
IL-6, IL-1β, and TNF-α were not detected in the culture medium of non-stimu-
lated or LPS-stimulated bone marrow macrophages following radiation, ther-
mal or combined injury at 3, 6, 24, and 48 hours. Bone marrow macrophages, 
incubated in the presence of LPS at the culture medium, revealed an increased 
IL-6 production only at 72 h after radiation (255 ± 65 pg/mL) and burn alone 
(517 ± 77 pg/mL); control value was determined as 103 ± 20 pg/mL. There was 
no detectable level of IL-6 in the cell culture supernatants of LPS-stimulated 
bone marrow macrophages followed combined injury. 

3.2  Serum Cytokine Response Following Radiation, Thermal 
or Combined Injury
Concentrations of IL-1β, TNF-α, IL-6, GM-CSF and IL-3 in the serum of nor-
mal healthy mice were below the ELISA test sensitivity limits. As the experi-
mental study showed, gamma irradiation did not increase cytokine levels in the 
systemic circulation. The absolute majority of irradiated mice did not revealed 
detectable amounts of IL-1β, TNF-α, GM-CSF and IL-3 in their serum samples 
at 3, 6, 24, 48 and 72 hours after exposure.
Neither burn only nor combined injury induced an elevation of serum IL-1β, 
IL-3, GM-CSF or TNF-α levels within the first three days after injuries. The 
evaluated blood samples that were obtained from burned or combined injury 
mice did not revealed detectable amounts of these cytokines.
Significant differences were revealed in the IL-6 serum levels after irradiation 
or combined injury. Combined injury induced time-dependent changes of IL-6 
concentration among a much larger number of animals in comparison with 
mice that were irradiated only (serum samples with detectable amounts of IL-6 
were more frequent in combined injury mice). The results of IL-6 concentration 
measurements are presented in Table. 2. As shown, combined injury induced 
the most expressed and protracted increase of serum IL-6 levels.
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Table 2. Effects of Radiation, Combined Injury, and Burn on Serum IL-6 Levels (pg/ml).

Group 3 hr 6 hr 24 hr 48 hr 72 hr
Radiation 69 ± 16.7 53 ± 10.6 ND ND ND
Combined 
injury

317 ± 76.0 337 ± 88.7 61 ± 6.2 194 ± 16.6 111 ± 10.9

Burn 269 ± 82.0 174 ± 35.3 ND ND ND
Control  
(no injury)

ND ND ND ND ND

ND - not detectable levels.

3.3  The Early Blood System Response Following Radiation,  
Thermal or Combined Injury
Radiation only caused an initial increase of white blood cells (WBC) at 6 h af-
ter exposure followed by development of leukopenia up to 72 h (Table. 3). Burn 
trauma was accompanied by a significant increase in the WBC count at 3-6 hr after 
injury along with simultaneous development of hemoconcentration. Hematological 
disorders after combined injury included initial leukocytosis and hemoconcentra-
tion, as well as early developing leukopenia. It should be stressed that combined 
injury caused a more rapid decrease in WBC and platelet numbers than did radia-
tion only. No differences were noted in the degree and rate of development of the 
first bone marrow devastation phase after radiation alone or after combined injury.

Table 3. Hematological Status of Mice Following Radiation, Thermal, and Combined Injury.

Group 3 hr 6 hr 24 hr 48 hr 72 hr
White Blood Cells (x 103/mm3)

Radiation 6.8 ± 0.89 9.8 ± 0.60* 3.7 ± 0.69 1.7 ± 0.37* 1.4 ± 0.26*
Combined 
Injury

8.7 ± 0.60* 7.8 ± 0.73 5.0 ± 1.0 1.0 ± 0.26* 0.4 ± 0.10**

Burn 10.9 ± 0.60* 10.8 ± 0.60* 6.2 ± 0.66 5.8 ± 1.00 5.5 ± 0.79
Control 5.5 ± 0.91 5.5 ± 0.91 5.8 ± 0.92 5.3 ± 0.90 5.0 ± 0.72

Red Blood Cells (x106 / mm3)
Radiation 5.4 ± 0.21 5.8 ± 0.10 6.0 ± 0.10 5.6 ± 0.05 5.3 ± 0.44
Combined 
Injury

6.3 ± 0.09** 5.6 ± 0.22 5.9 ± 0.08 6.0 ± 0.20 5.1 ± 0.20

Burn 6.2 ± 0.09* 5.9 ± 0.20 6.3 ± 0.44 5.9 ± 0.13 5.8 ± 0.08
Control 5.7 ± 0.07 5.7 ± 0.07 5.8 ± 0.32 5.6 ± 0.15 5.6 ± 0.25

Hemoglobin (g/dl)
Radiation 13.1 ±0.51 12.6 ± 0.16 12.3 ± 0.19 11.3 ± 0.34 12.3 ± 0.37
Combined 
Injury

14.9 ± 0.23** 12.1 ± 0.49 12.4 ± 0.20 12.7 ± 0.54 13.5 ± 0.44

Burn 13.3 ± 0.40* 12.7 ± 0.29 14.4 ± 0.22 11.3 ± 0.43 14.3 ± 0.18
Control 12.3 ± 0.08 12.3 ± 0.08 13.0 ± 0.56 12.1 ± 0.22 13.3 ± 0.49
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Group 3 hr 6 hr 24 hr 48 hr 72 hr
Platelets (x 103 /mm3)

Radiation 284 ± 14 252 ± 6 226 ± 13 287 ± 13 243 ± 8
Combined 
Injury

255 ± 11 250 ± 17 197 ± 25 217 ± 12** 179 ± 8**

Burn 235 ± 12 259 ± 13 231 ± 32 311 ± 15 282 ± 9
Control 260 ± 5 260 ± 5 249 ± 20 317 ± 13 231 ± 16

Bone marrow cells (x 106 /femur)
Radiation 11.7 ± 1.42* 11.5 ± 1.28* 5.6 ± 0.75* 2.4 ± 0.31* 0.4 ± 0.05*
Combined 
Injury

13.4 ± 1.34* 10.1 ± 1.02* 5.0 ± 0.59* 2.1 ± 0.17* 0.4 ± 0.05*

Burn 15.0 ± 1.56 15.9 ± 1.25 13.5 ± 1.4* 15.1 ± 0.89* 13.1 ± 1.71*
Control 18.6 ± 1.64 18.6 ± 1.64 18.1 ± 1.64 20.3 ± 0.67 18.2 ± 1.44

* p < 0.05 with respect to Control values
** p < 0.05 with respect to Control values and Radiation group

3.4  The Effects of BRMs on the Serum Cytokine Response  
Following Radiation, Thermal or Combined Injury
Not one of the three examined BRMs enhanced release of the hemoregulatory 
cytokines IL-3, GM-CSF, and TNF-α into the serum of normal healthy mice. 
Concentration of these cytokines remained lower than ELISA test sensitivity 
limits also in all examined serum samples at 3, 6, 24, 48, and 72 hours follow-
ing radiation, thermal or combined injury.
Single injections of STDM and heat-killed L. acidophilus (LA) did not increase 
IL-1β levels in the systemic circulation of normal healthy mice. IL-1β remained 
as not detectable also in the murine serum samples of the three examined experi-
mental groups (“burn alone”, “radiation alone”, “combined injury”). Only Imu-
vert application (the commercially available preparation of extract from Serratia 
marcescens) exerted transitory influence upon the serum levels of IL-1β (Table. 
4). As shown, there were no statistical significant differences between the “radia-
tion” and “combined injury” groups after Imuvert administration (Pt > 0.05).

Table 4. Concentration of IL-1β (pg/ml) in the Serum of Mice Treated with Imuvert.

Group 3 hr 6 hr 24 hr 48 hr 72 hr
Radiation 433 ± 28.2 264 ± 35.3 ND ND ND
Combined 
injury

490 ± 109.4 145 ± 53.5 ND ND ND

Burn 262 ± 39.2 188 ± 37.8 ND ND ND
Control  
(no injury)

435 ± 74.4 83 ± 8.1 ND ND ND

ND - not detectable level. 

Table 3. Continued
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The most evident capacity of BRMs to enhance endogenous serum cytokine 
responses following radiation, thermal burn, and combined injury was revealed 
when serum IL-6 level was measured (Table 5).

Table 5. Concentration of IL-6 (pg/ml) in the Serum of Mice Treated with Different 
Biological Response Modifiers.

Group 3 hr 6 hr 24 hr 48 hr 72 hr
Control(No 
treatment)

ND ND ND ND ND

Control + LA 500 ± 124 458 ± 17 ND ND ND
Control + 
IMUVERT

7870 ± 238 2210 ± 188 63 ± 11 ND ND

Control + 
STDM

1693 ± 107 3884 ± 163 375 ± 68 112 ± 36 ND

Radiation (No 
treatment)

69 ± 17 53 ± 11 ND ND ND

Radiation + 
LA 

227 ± 43 527 ± 8 ND ND ND

Radiation + 
IMUVERT

9930 ± 70 8221 ± 132 93 ± 12 82 ± 35 ND

Radiation + 
STDM

1765 ± 550 4424 ± 609 751 ± 48 302 ± 24 96 ± 24

Combined 
injury (No 
treatment)

317 ± 76 337 ± 89 61 ± 6 194 ± 17 111 ± 11

Combined 
injury + LA 

754 ± 54 489 ± 31 55 ± 8 151 ± 17 267 ± 82

Combined 
injury + IMU-
VERT 

9641 ± 121 8627 ± 304 448 ± 24 182 ± 19 154 ± 16

Combined in-
jury + STDM 

1139 ± 159 3255 ± 372 3130 ± 749 789 ± 248 187 ± 30

Burn (No treat-
ment)

269 ± 82 174 ± 35 ND ND ND

Burn + LA 715 ± 56 607 ± 54 ND ND ND
Burn + IMU-
VERT

9214 ± 115 8700 ± 242 227 ± 19 183 ± 33 225 ± 74

Burn + STDM 2826 ± 328 5590 ± 228 733 ± 100 85 ± 11 56 ± 17
ND - not detectable level. 

Heat-killed L. acidophilus subcutaneous injection induced moderate increase 
of IL-6 concentration in the serum of control mice (no injury) within the first 
3-6 hours, up to 450-500 pg/ml on average, by comparison with not detect-
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able levels of IL-6 in the healthy control mice (untreated group). A roughly 
similar transitory enhancing effect of LA to the serum IL-6 level was ob-
served in the burn, radiation, and combined injury groups. Slightly increased 
levels of IL-6 at 24, 48, and 72 hours after combined injury and LA injection 
did not differ statistically from the response of IL-6 in the combined injury 
group without treatment at the observation points stated above. 
A single intraperitoneal administration of Imuvert to normal mice caused very 
strong serum IL-6 levels elevation at 3 and 6 hours (7,870 ± 238 pg/ml, and 
2,210 ± 188 pg/ml, respectively), followed by a sharp decrease in the cytokine 
amount 24 hours after drug injection. A rise of IL-6 concentrations in the sera 
of irradiated, burned, and combined injury mice, treated with Imuvert, was 
even larger than the previous control values (p < 0.05). The differences be-
tween the three studied groups (radiation, burn, and combined injury) at 3 and 
6 hours after Imuvert injection were not statistically significant.
The concentration of IL-6 increased in 3 hours and reached its maximum in 
6 hours (3884 ± 163 pg/mL) after a single injection of STDM to the normal 
control mice. STDM maintained moderate serum IL-6 activity also at 24 and 
48 hours after administration. The burned animals  ̓response to STDM at 3 
and 6 hours was the most significant as compared with the controls (healthy 
mice which received STDM). From all the studied groups, only the combined 
injury mice kept up the peak level of IL-6 (more than 3000 pg/ml) 24 hours 
after STDM injection.
Thus, all three BRMs induced maximal levels of IL-6 during the first 3-6 
hours after injection. Imuvert proved to be the most active IL-6 levels “en-
hancer”. Heat-killed L. acidophilus showed relatively weak activity among 
the experimentally evaluated BRMs. STDM was characterized by an inter-
mediate activity (with respect to Imuvert and LA) within the first 3-6 hours 
after injection but exerted rather more prolonged stimulatory influence on 
the serum IL-6 level. It is necessary to emphasize that Imuvert and STDM 
given after combined injury maintained increased serum IL-6 levels at 24 
and 48 hours, even despite the relatively high cytokine levels endogenously 
produced by combined injury itself (without BRM administration).

3.5  Effects of BRMs on Mouse Survival Rate and Blood 
System Recovery After Combined Injury
Survival of control mice with combined injury amounted to an average of 
50% (Fig.1). The best therapeutic result was achieved when heat-killed L. 
acidophilus was injected; 100% of animals survived until the 30th day. Single 
administration of Imuvert or STDM did not significantly modify the survival 
rate of control (untreated) mice with combined injury. There were no statisti-
cally significant differences of mean survival time in mice with combined 
injury treated with Imuvert (12.1 ± 3.35 days) or STDM (11.9 ± 1.24 days), 
as compared with the untreated control group (10.9 ± 0.61 days).
STDM and Imuvert showed significant (Pt <0.01) increase of endogenous 
CFUs number, up to 6.7 ± 1.00 and 11.6 ± 3.58 respectively, as compared 
with the untreated control group (2.6 ± 0.58). Injection of LA did not cause 
any difference in CFU production (3.6 ± 1.11).
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STDM accelerated the intensity of bone marrow cellularity recovery rate. 
On the contrary, mice given Imuvert showed a one-week delay of the re-
covery rate. At the same time, LA did not modify the recovery rate of bone 
marrow that was related to combined injury (Table 6).

Table 6. Effects of Different Biological Response Modifiers on the Bone Marrow 
Recovery after Combined Injury.

Group 7 days 14 days 21 days 30 days
CI (control) 1.0 ± 0.70 16.3 ± 1.27 22.5 ± 1.59 19.6 ± 1.28
CI + LA 1.0 ± 0.09 16.3 ± 1.88 22.9 ± 2.41 21.9 ± 2.34
CI + STDM 2.0 ± 0.25* 22.2 ± 3.29* 15.0 ± 1.77* 17.7 ± 1.98
CI + Imuvert 1.3 ± 0.17 11.8 ± 1.26* 20.4 ± 3.25 19.2 ± 3.15

* p < 0.05 with respect to CI (control) values.
The results are number of bone marrow cells (x 106 ) per femur.
Healthy mice (no injury, no treatment) - 19.7 ± 0.80

Results of blood cells recovery after combined injury and BRM adminis-
tration are presented in Table 7. As one can see, not one of the examined 
BRMs improved severe blood cell deficiency during the most crucial 
clinical phase (seven days after combined injury). Moreover, injection of 
STDM decreased the white blood cell count even more, owing to granu-
locyte deficiency. Injection of STDM caused wide individual differences 
of white blood cell recovery rates 14 and 21 days after combined injury. 
However, the general tendency was for the rates to increase more than in 
the combined injury control group. 
The recovery phases of leukopenia and granulocytopenia in the surviving 
mice (14, 21 and 30 days observation points) was more monotonous in the 
“combined injury + LA” and “combined injury + Imuvert” groups than 
in the STDM group. All three BRMs caused a similar degree of moderate 
and transitory increase of erythrocytes (14 days after combined injury) 
and platelets (21 days after combined injury) with respect to untreated 
mice. However, these peculiarities, demonstrated among subpopulations 
of surviving mice, are most likely not important factors in determining 
the prognosis in combined injury.
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Table 7. Effects of Different Biological Respose Modifiers on Blood Cell Recovery  
After Combined Injury.

Group 7 days 14 days 21 days 30 days
White Blood Cells (x103 /mm3)

Healthy mice (no injury, no treatment) - 6.4 ± 0.58
CI (control) 0.4 ± 0.05 5.4 ± 0.63 6.5 ± 0.55 4.7 ± 0.37
CI + LA 0.4 ± 0.04 4.9 ± 0.74 4.4 ± 0.68* 4.0 ± 0.75
CI + STDM 0.2 ± 0.03* 7.1 ± 1.10 15.7 ± 6.29 4.5 ± 0.61
CI + Imuvert 0.4 ± 0.05 4.8 ± 0.60 5.3 ± 0.56 4.6 ± 0.49

Granulocytes (x103 /mm3)
Healthy mice (no injury, no treatment) - 1.80 ± 0.17

CI (control) 0.24 ± 0.04 1.55 ± 0.20 3.34 ± 0.31 1.43 ± 0.15
CI + LA 0.17 ± 0.02 1.76 ± 0.30 1.85 ± 0.43* 1.62 ± 0.38
CI + STDM 0.09 ± 0.03* 3.87 ± 0.69* 8.18 ± 4.23 1.33 ± 0.22
CI + Imuvert 0.23 ± 0.03 2.29 ± 0.39 2.25 ± 0.23* 1.75 ± 0.21

Red Blood Cells (x106 / mm3)
Healthy mice (no injury, no treatment) - 5.3 ± 0.10

CI (control) 4.3 ± 0.14 4.4 ± 0.15 6.2 ± 0.13 5.3 ± 0.06
CI + LA 4.5 ± 0.26 5.0 ± 0.18* 6.2 ± 0.24 5.3 ± 0.07
CI + STDM 4.7 ± 0.13 5.1 ± 0.25* 6.0 ± 0.33 5.3 ± 0.17
CI + Imuvert 4.4 ± 0.28 5.1 ± 0.28* 5.6 ± 0.15* 4.9 ± 0.17*

Platelets (x103 /mm3)
Healthy mice (no injury, no treatment) - 311 ± 35.4

CI (control) 52 ± 13.9 290 ± 17.8 238 ± 14.8 267 ± 9.1
CI + LA 35 ± 11.0 319 ± 21.9 302 ± 18.4* 232 ± 23.3
CI + STDM 58 ± 10.0 303 ± 30.4 396 ± 63.8* 254 ± 18.8
CI + Imuvert 52 ± 15.4 269 ± 27.5 314 ± 22.5* 263 ± 20.5

* p < 0.05 with respect to CI (control) values.
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4.0  Discussion

At present, it has been proven that endogenous production of IL-1, IL-6, and 
TNF-α is required to survive acute radiation syndrome and myelosuppression 
induced by life-threatening whole body irradiation. The synergistic interaction 
of these three cytokines stimulates production of a cascade of lineage-specific 
growth factors, including IL-3, GM-CSF, G-CSF, M-CSF, and so on, that are 
more restricted to hematopoietic effects [60, 61]. In order to better understand 
the pathogenesis of combined radiation injury, this work evaluated endogenous 
as well as LPS-stimulated IL-1, IL-6, and TNF-α production following total 
body irradiation and combined injury.
Macrophages can be heterogeneous for the production of TNF, IL-1, and IL-6 
according to their different sources [66]. In this study we examined the peri-
toneal, splenic, and bone marrow macrophages to determine possible pecu-
liarities of cytokine production by the different populations of macrophages 
following radiation, burn, and combined injury. The evaluation of cytokine 
production in the hematopoietic organs in mice (bone marrow, and spleen) is 
especially important because these organs contain target cells both for multi-
functional cytokines and for lineage-specific hemopoietic growth factors.
Endogenous (non-LPS-stimulated) production of IL-1β was not revealed in 
any of the culture supernatants of peritoneal, splenic, and bone marrow macro-
phages following radiation, burn, and combined injury. 
LPS-stimulated peritoneal macrophages revealed increased IL-1 production 
at 72 hr after exposure. It was shown that there were no significant differ-
ences of increased IL-1 responses of peritoneal macrophages to radiation 
versus combined injury (p > 0.1). It should be stressed that cytokine response 
to radiation exposure was below ELISA sensitivity if macrophages were 
harvested from the hematopoietic organs in mice. Neither radiation alone nor 
combined injury enhanced production of IL-1 by in vitro LPS-stimulated and 
bone marrow macrophages. 
It is known that irradiation induces an early increasing of splenic cytokine gene 
expression for IL-1β determined by RT-PCR [78]. The IL-1β mRNA level 
in spleen cells increased for a short time prior to regeneration of the spleen 
[31, 57]. Ionizing radiation also induces an accumulation of IL-1α mRNA 
in the mouse spleen. An increase in the level of IL-1α protein was observed 
simultaneously, although the magnitude of increased protein expression did 
not complement the magnitude of the accumulation of the mRNA [2]. Protein 
levels of IL-1β in bone marrow and spleen did not appear to change in concert 
with mRNA levels [10]. These published data agree with our results that mac-
rophages, harvested from bone marrow and spleen within the first three days 
after radiation alone or combined injury, did not reveal any elevation of IL-1 
production as an essential molecular master switch for secretion of IL-3, GM-
CSF, G-CSF, and other lineage-specific growth factors.
All three populations of macrophages studied did not produce detectable levels 
of TNF-α following radiation, burn, and combined injury. The revelation of in 
vitro TNF production is difficult if various preliminary in vivo induction pro-
cedures were not carried out. Priming has classically been induced in vivo by 
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bacteria such as Bacillus Calmette-Guerin or Corynebacterium parvum. Within 
the framework of this study, only non-primed resident macrophages were 
harvested. This may be one of the possible explanations that LPS-stimulated 
TNF-α production was not revealed.
TNF-α mRNA expression consistently increased in splenocytes of burned mice 
at intervals from 4 to 21 days after burn. But in vitro TNF-α production from 
cultured LPS-stimulated splenic adherent cells of mice was not elevated in the 
early days after severe thermal injury. It was significantly enhanced from day 6 
[64, 73]. TNF production by LPS-stimulated splenic macrophages increased at 
post burn day 8 versus control (no burn), as well as versus post burn days 1 and 
3. By post burn day 8 tissue macrophages may have become primed to respond 
to a stimulus such as LPS [92]. TNF-α mRNA level was unaltered within the 
first day after irradiation compared with unirradiated control mice [78]. There-
fore, enhancing of TNF-α production by macrophages probably could be ob-
served at later periods after burn, radiation, and combined injury. We regard it as 
a more acceptable explanation of the revealed fact that LPS-stimulated TNF-α 
production was not enhanced following radiation, burn, and combined injury.
There are contrary published data to the effect that at early times after ther-
mal injury guinea pig and rat bone marrow macrophages produced different 
amounts of TNF-α compared with unburned animals [67, 70]. At 2 or 24 h 
postburn guinea pig mesenteric lymph node and splenic macrophages, primed 
in vitro by LPS, produced different and sometimes large amounts of TNF-α 
and IL-6 compared to controls [25]. These data do not coincide with our results 
because of the differences in the burn models used. The authors of these pub-
lications used a more severe guinea pig and rat burn model of 30% total body 
surface area; we used a murine model with a comparatively light degree burn 
of 10% TBSA.
Besides that, there may be other explanations connected with cell culture condi-
tions. In murine macrophages, TNF-α production appears to commence almost 
immediately after exposure to LPS, continues for several hours, peaks at 3 to 4 
hr, then ceases abruptly. The reasons for this decrease in TNF-α activity is not 
clear at present. TNF-α itself can be absorbed by the macrophages. Incubation 
of murine macrophages in carbon dioxide results in reversible inhibition of LPS-
stimulated TNF-α release. The molecule may simply be lost from solution by 
binding to the tissue culture plate (incubation-reduction phenomenon). Recom-
binant human TNF-α itself lost activity when incubated more than 12 hr. The 
mean media concentration of TNF-α activity at 24 hr was significantly less than 
the mean concentrations at 0, 3, 6, and 12 hr [28, 37, 54, 82, 90]. It is possible 
that macrophages, stimulated by LPS for 24 hr, may have produced more TNF 
than macrophages incubated for shorter time periods, but TNF-α loses activ-
ity when present in vitro under tissue culture conditions for greater than 12 hr. 
In our work, macrophages were LPS-stimulated in vitro for 24 hr because that 
time-period was the most acceptable for simultaneous evaluation of IL-1, IL-6, 
and TNF-α production in one common supernatant sample [18, 25, 66].
Peritoneal macrophages, incubated with or without addition of LPS to the 
culture medium, revealed constant two-phase enhancing of IL-6 production fol-
lowing radiation and combined injury. A thermal burn given to irradiated mice 
did not alter the radiation-induced increase of IL-6 production levels.
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Radiation alone and combined injury did not enhance in vitro production of IL-
6 by splenic macrophages (both unstimulated and LPS-stimulated). The levels 
of cytokine in culture supernatants were lower than ELISA sensitivity limits. 
These results are in accordance with data that, in spite of increased radiation 
induced splenic cytokine gene expression for IL-6, no increased protein levels 
were detected [10].
IL-6 was also not detected in the culture medium of non-stimulated and LPS-
stimulated bone marrow macrophages following combined injury at 3, 6, 24, 
48, and 72 hr. At the same time, bone marrow macrophages harvested from 
only irradiated mice revealed an increased IL-6 production at 72 hr after ex-
posure. IL-6 is an important mediator of both IL-1-induced and TNF-induced 
hematopoietic recovery. The detected differences between radiation alone and 
combined injury, determined at the local level in the bone marrow, may be con-
sidered as unfavorable factors of combined injury pathogenesis. 
The results suggest that, in general, peritoneal, splenic, and bone marrow mac-
rophages from combined injury animals did not revealed significant differences 
in the capacity to produce IL-1β, TNF-α, and IL-6 compared with irradiated 
only mice (with the exception of the foregoing single fact).
The evaluation of serum cytokine response following radiation, thermal or 
combined injuries included determination of IL-1β, TNF-α, IL-6, IL-3, and 
GM-CSF levels. Our study revealed that cytokine levels in the sera of normal 
healthy mice were below the limits of detection by the enzyme-linked immu-
nosorbent assay (ELISA). These results coincide with the results of many other 
investigators [10, 22, 50, 51, 59].
The absolute majority of irradiated mice did not reveal detectable amounts of 
IL-1β, TNF-α, GM-CSF, and IL-3 in their serum samples at 3, 6, 24, 48 and 72 
hours after exposure to a minimal lethal dose of 7 Gy. As shown earlier [9, 10], 
no increased serum GM-CSF, IL-1β, IL-6, and TNF-α levels were detected 
from days 2 to 14 in irradiated mice. Recently the first work was published that 
demonstrated an increasing of serum TNF-α levels after exposure to ionizing 
radiation [33]. However, this work was performed in irradiated rats (versus 
mice of all foregoing references, and our own experiments), animals were ir-
radiated at a higher dose (10 Gy), and cytokine levels were determined only at 
the early points of time (15, 60, and 120 min after irradiation).
In the murine burn model that was used for this work, we did not find an eleva-
tion of serum IL-1β, TNF-α, GM-CSF, and IL-3. Our results conform to pub-
lished data. In particular, no significant changes in IL-1, and IL-3 were noted 
after severe trauma [3, 29]. The presence of serum cachectin was not univer-
sally observed in any group of burned animals, even if rats received 30% full-
thickness scald burns or were burned and infected [50]. Thermal injury caused 
a decrease in TNF-α mRNA, and TNF-α could not be found in the serum post 
burn day 1, or on the day of admission in patients with thermal injuries [17, 49, 
93]. In the early period after injury (including the period of burn shock) only 
24 patients of 42 had detectable TNF-alpha levels in their plasma. An evident 
increase of serum TNF activity was revealed only in severely burned patients 
during burn wound surgical revision, in patients with complications including 
multiple organ failure and sepsis [40 – 43].
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The evaluation of serum cytokine responses following combined injuries, as 
well as following radiation alone, and thermal burn alone, did not reveal detect-
able amounts of IL-1β, TNF-α, IL-3, and GM-CSF in the tested serum samples.
At the same time, combined injury induced significant increase of serum IL-6 
concentration that was more prolonged versus burn-induced cytokine elevation, 
and was much higher versus IL-6 levels detected among the irradiated mice. 
Elevation of serum IL-6 levels after combined injury probably reflects the de-
velopment of a systemic post-traumatic response. 
There are actually several publications that describe increasing serum IL-6 
levels in murine or rat burn models [4, 23, 72], and in burned patients [3, 29, 
36, 80, 92]. All non-surviving burned patients had higher IL-6 levels than 
those of surviving patients. IL-6 concentration was highest during the first 
week after injury and declined over time. These findings suggest that IL-6 
may influence metabolic and immunologic responses in the first few weeks 
following thermal injury [17].
If the data regarding the participation of TNF-α and/or IL-1 in the response to 
trauma are less consistent, IL-6 has been shown to be elevated in patients or in 
animals with induction of acute-phase proteins and procoagulation [94]. An in-
creased expression of IL-6 mRNA in liver tissue from rats at 24 h after thermal 
injury was accompanied by an elevation of IL-6 released from cultured Kupffer 
cells, by increased serum levels of this cytokine, and with an elevated serum 
level of acute phase protein. Acute phase proteins are produced as a part of the 
immune response to trauma, and IL-6 plays an important role in acute phase 
protein induction [93].
Significant elevation in the production of IL-6 is one of the most potent media-
tors of early post-burn inflammatory and immune dysfunction. The defects in 
cellular immune responses in a murine model of thermal injury were mediated 
in large part by increasing production of IL-6, both systemically and by splenic 
macrophages [22, 23]. It was shown that treatment with antimurine IL-6 anti-
body after thermal injury and gavage by E. coli positively affect the outcome 
during gut-derived sepsis. Survival rate was significantly improved compared 
with control mice treated with nonspecific IgG or saline. The IL-6 serum con-
centration was significantly lower after burn and gavage in the treated animals 
compared with nontreated animals [27].
In the case of combined radiation and thermal injuries it is possible to expect 
development of all of the aforementioned inflammatory and immunologi-
cal disorders associated with burns and IL-6 elevation. The demonstrated 
increase of systemic IL-6 response to combined injury may become self-de-
structive, and may be capable of explaining (in part) the more severe out-
comes of combined injuries compared with acute radiation syndrome alone. 
For example, enhanced serum IL-6 levels, as shown in this work, may be re-
sponsible for the accelerated decrease of leukocytes and platelets in the early 
phase of peripheral blood damage, as consequences of IL-6-caused procoagu-
lation and inflammatory development. 
A comparison of blood cytokine responses with hematological data and surviv-
al of mice after combined injury and single BRM injection permits us to offer 
the following conclusion. 
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All three BRMs studied did not reveal any effects on the serum IL-3, GM-CSF 
and TNF-α levels. Only Imuvert injections slightly increased serum concen-
tration of IL-1β in 3-6 hours after combined injury. STDM and heat-killed L. 
acidophilus did not enhance serum IL-1 level. By the way, it has been shown 
[76], that Betafectin, a novel beta-(1,3)-glucan, has broad-spectrum anti-infec-
tive and hematopoietic activities without cytokine induction.
On the other hand, changes of serum IL-6 levels, induced by BRMs, were 
much more obvious. The IL-6 enhancing capacity of the evaluated BRMs, 
in terms of absolute values of serum peak levels, was as follows: Imuvert 
> STDM > LA. In terms of duration of increased serum levels, STDM > 
Imuvert > LA. 
A single injection of “strong IL-6 enhancer” STDM significantly increased 
endogenous CFU production and caused a more rapid and intensive recovery of 
bone marrow cellularity and white blood cell count with respect to the control 
group (combined injury without treatment). At the same time, STDM admin-
istration to mice with combined injury resulted in the lowest level of 30-days 
survival (30% average).
LA, being the “weak(est) IL-6 enhancer”, did not increase the number of 
CFUs, did not improve the recovery of bone marrow cellularity, and did not 
reveal any significant effect on the leukopenia level and white blood cell recov-
ery rate as compared with control (non-treated combined injury). At the same 
time, injection of LA resulted in an increase of 30-day survival up to 100%. 
It is quite probable that an “inappropriate” acute phase and inflammatory ef-
fect as well as procoagulation were induced by abundant serum IL-6 levels 
after combined injury. Administration of Imuvert or STDM caused further 
significant elevation of enhanced IL-6 levels that could be responsible for even 
more evident development of an “inappropriate” effect. All this masks the 
demonstrated positive effects of BRMs on blood system recovery. As a result, 
STDM and Imuvert were not very beneficial in providing for mice survival 
after combined injury. Heat-killed L. acidophilus, which demonstrated a weak 
capacity to enhance increased serum levels of IL-6 after combined injury, 
promoted survival of mice without improving of hematological status. Recently 
it was shown [88] that when irradiated mice were treated with IL-11, increased 
survival of mice was not accompanied by improving hematopoietic status. This 
suggests that other mechanisms could be involved.
Future investigation should resolve, in greater detail, at least two problems: a) 
what is the actual role of enhanced serum IL-6 levels in the pathogenesis, the 
more severe clinical course, and the worse outcomes of combined injury versus 
acute radiation syndrome, and b) what are the non-hematopoietic activities of 
heat-killed L. acidophilus that promote significant increase of survival follow-
ing combined injury.
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